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Cittadella Universitaria, 09042 Monserrato (Ca), Italy

Received 3 December 2009 / Received in final form 13 March 2010
Published online 10 June 2010 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2010

Abstract. The problem of predicting the effective elastic properties of multi-cracked and/or composite
materials is both fundamental in materials mechanics and of large technological impact. In this paper we
develop a continuum elasticity model, based on the Eshelby theory and on the differential homogenization
technique, for the effective elastic moduli of a fibro-reinforced system and we address it to elaborate an
estimation of the average failure condition of such composites.

1 Introduction

This work is aimed at evaluating the effective elastic
properties of materials containing a given distribution of
cracks and inclusions. A paradigmatic example of such
multi-cracked materials with large technological impact
is offered by nanocomposites (i.e. nanofibro-reinforced
materials): here a tailored texture of fibers is inserted
into a matrix, so generating a structure with overall im-
proved mechanical properties (e.g., higher fracture tough-
ness) [1,2]. In many real applications carbon nanotubes
and nanofibers (also chemically functionalized) are used
in reinforced composites [3,4]. Moreover, silicon carbide
composites reinforced by carbon fibers (C/SiC) are ce-
ramic materials, characterized by thermo-mechanical sta-
bility, low density and high fracture toughness [5,6].

While the overall effect of a crack population embed-
ded in a homogeneous matrix has been evaluated by the
method of tractions (or pseudotractions) [7,8], through
the self-consistent technique [9] and by the differential
methodology [10–12], the interplay among cracks and re-
inforcing inclusions (like, e.g., fibers) is still largely unex-
plored. In the present paper we introduce a methodology
for homogenizing a multi-cracked and composite material,
taking into account the interactions between cracks and
reinforcing particles. This work, therefore, belongs to the
vast field of homogenization techniques [13,14].

As for the elastic characterisation of dispersions, sev-
eral works have been developed: an exact result exists for a
material composed by a very dilute concentration of spher-
ical or cylindrical inclusions dispersed in a solid matrix.
This result, attributed to several authors [15,16], has been
generalized to the case of any finite volume fraction by
iterative [17,18] or differential [19–21] methods both for
spherical or cylindrical inclusions [22] and for ellipsoidal
particles [23].

a e-mail: stefano.giordano@dsf.unica.it

From the historical point of view, one of the first at-
tempt to obtain the effective behavior of an elastic disper-
sion has been performed through a self-consistent method
(SCM) leading to the so-called Mori-Tanaka scheme [24].
The range of validity of such a method has been discussed
for a polydisperse (size) suspension of spherical inclusions
in a continuous matrix phase [25]. Moreover, specific re-
sults have been obtained for composites reinforced by
aligned or randomly oriented, transversely isotropic fibers
or platelets by using the above Mori-Tanaka scheme [26].
A further generalization has been performed through a
method to obtain the transversely-isotropic effective ther-
momechanical properties of unidirectional composites re-
inforced with arbitrarily coated cylindrical fibers [27].
Some other methodologies have been developed as well
to cope with different phases forming the reinforcing sys-
tem: for example, the double-inclusion model (formed by
an ellipsoidal inclusion with an ellipsoidal heterogeneity,
embedded in an infinitely extended homogeneous domain)
has been introduced and it has been generalized to the
multi-inclusion model [28]. These approaches have been
applied to a composite containing inclusions with mul-
tilayer coatings and to a composite consisting of sev-
eral distinct materials: in each case their overall moduli
are analytically estimated [28]. Finally, a generalized self-
consistent method (GSCM) based on the energy equiva-
lence and a matrix-composite model have been proposed
and broadly applied to composites with three or more
phases [29].

The above theoretical methods have a common fea-
ture, namely: they have been applied to single- or
multiple-phase reinforcing inclusions, but do not take into
consideration the interplay among inclusions and cracks.
Therefore, we devote the first part of the present pa-
per to the development of a differential method which is
able to consider (arbitrarily large) volume fractions of an
arbitrary number of interacting populations of different
inhomogeneities (either reinforcing inclusions or cracks)
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Fig. 1. (Color online) Scheme of a multicracked and fibro-

reinforced material. Ĉ0, Ĉ1 and Ĉ2 are, respectively, the stiff-
ness tensors of the matrix, the cracks and the inclusions. On
the right we sketch the geometrical parameters for the elliptic
cracks.

embedded in the hosting matrix. In particular, we derive
a set of ordinary differential equations describing the effec-
tive elastic moduli (the stiffness tensor) of the composite
structure with an arbitrary stoichiometric composition.

In the second part of the present paper we investigate
the paradigmatic situation of a fibro-reinforced and multi-
cracked composite material with parallel cylindrical fibers,
much stiffer than the host matrix. In this case fibres and
cracks represent two different embedded populations. A
schematic representation of such a structure can be found
in Figure 1, where the geometric details are shown. This
situation ideally meets the C/SiC case above discussed.
The present differential method is addressed to obtain the
effective elastic behavior of this system through a pair of
closed-form relationships (for the effective Young modulus
and the Poisson ratio, respectively). The resulting elastic
model is discussed with the support of numerical results,
which describe the behavior of the system with different
properties of its constituents.

Finally, we describe an approximate application of the
Griffith stability criterion for a composite material, de-
graded by a given assembly of cracks. We obtain an es-
timation of the average failure stress in terms of the vol-
ume fraction of reinforcing fibres and the crack density. It
is therefore possible to predict approximately the actual
volume fraction of fibers to embed in order to get the de-
sired value of failure stress, when it is defined the largest
crack density admitted in the sample.

The structure of the paper is the following: in Section 2
we outline the multicomponent differential procedure. In
Section 3 we describe the application of such a method to
the multi-cracked and fibro-reinforced structure. Finally,
in Section 4 we describe the estimation of the failure stress
for the heterogeneous system.

2 Multicomponent differential method

In general, we define a composite as a matrix (with stiff-
ness tensor Ĉ0) embedding N populations of different in-
clusions, characterized by volume fractions vi and stiffness
tensors Ĉi (i = 1...N). For isotropic phases each stiffness
tensors Ĉi can be written in terms of the Young modulus
Ei and the Poisson ratio νi, taking into account the elas-
tic response of the i-th material [30–32]. As customary in
micromechanics [33–35], we assume that each inclusion is
an ellipsoid, since such a shape is the mother geometry of

all the structures of interest for this work (i.e., cylindrical
fibers and slit cracks). For sake of simplicity, all the ellip-
soids of the i-th population are taken equal. Within this
framework, we make use of the Eshelby theory [36,37] for
describing their elastic behavior upon loading. This the-
ory provides the relationship between the uniform strain
ε̂i within each inclusion and the remotely applied strain

ε̂0, namely: ε̂i =
[
Î − Ŝi

(
Î − Ĉ−1

0 Ĉi

)]−1

ε̂0, where Ŝi is
the Eshelby tensor of the i-th population [33]. In the case
of randomly oriented inclusions, we are interested in the
average value 〈ε̂i〉 = Âiε̂0 of the internal strain over all
the possible orientations of the ellipsoids, where we have

defined Âi = 〈
[
Î − Ŝi

(
Î − Ĉ−1

0 Ĉi

)]−1

〉 [23].
The application of the Eshelby theory leads to a first

homogenization step valid only for diluted dispersions.
Under the assumption vi � 1, we can evaluate the av-
erage strain in the system as

〈ε̂〉 =

(
1 −

∑
i

vi

)
ε̂0 +

∑
i

vi〈ε̂i〉. (1)

On the other hand, the average value of the stress tensor
is given by

〈T̂ 〉 =
1
V

∫

V

T̂ dv

=
1
V

∫

V0

T̂ dv +
1
V

∑
i

∫

Vi

T̂ dv

=
1
V

Ĉ0

∫

V0

ε̂dv +
1
V

∑
i

Ĉi

∫

Vi

ε̂dv

+
1
V

Ĉ0

∑
i

∫

Vi

ε̂dv − 1
V

Ĉ0

∑
i

∫

Vi

ε̂dv

=
1
V

Ĉ0

∫

V

ε̂dv +
∑

i

Vi

V
(Ĉi − Ĉ0)

1
Vi

∫

Vi

ε̂dv

= Ĉ0〈ε̂〉 +
∑

i

vi(Ĉi − Ĉ0)〈ε̂i〉 (2)

where V0 is the volume of the matrix, Vi is the volume of
the i-th population of inclusions and V is the total volume
of the composite material. By drawing a comparison be-
tween the expressions for 〈ε̂〉 and 〈T̂ 〉, we eventually obtain
the effective stiffness tensor

Ĉeff = Ĉ0 +
∑

i

vi(Ĉi − Ĉ0)Âi

×
[(

1 −
∑

i

vi

)
Î +

∑
i

viÂi

]−1

. (3)

In the present case of diluted dispersions with vi � 1
equation (3) can be simplified by neglecting the last in-
verse tensor [38]. Therefore, the final expression for the
effective stiffness tensor is

Ĉeff = Ĉ0 +
∑

i

vi(Ĉi − Ĉ0)Âi. (4)
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For brevity, equation (4) can be summarized in the form
Ĉeff = f(Ĉ0, {Ĉi}, {vi}), where the function f fully de-
scribes the effective behavior of a dilute dispersion.

The next step is to consider higher values of the volume
fractions. We define Vi as the volume of the i-th population
of inclusions and V as the total volume of the composite
material (so that vi = Vi

V ). An iterative scheme can be
implemented by using a single scalar variable t defined by
vi = αit, with

∑
i αi = 1 and 0 ≤ t ≤ 1. We observe that

t represents the total volume fraction of inclusions since∑
i vi =

∑
i αit = t. We consider the initial configuration

with vi = Vi

V = αit and Vi = αitV , for a very small t.
The initial effective elastic tensor is calculated as Ĉeff =
f(Ĉ0, {Ĉi}, vi), according to equation (4).

Next, we slightly increase the inclusions volume by
ΔVi = αiΔtV and we get the corresponding effective stiff-
ness tensor Ĉ′

eff = f(Ĉeff, {Ĉi}, v′i). We stress that

v′i =
ΔVi

V +
∑

k ΔVk
=

Δt

1 + Δt
αi (5)

are the volume fractions of the inclusions embedded in a
virtual matrix of stiffness tensor Ĉeff. Since Δt is small
by construction, it is possible to elaborate a first order
expansion of Ĉ′

eff

Ĉ′
eff = Ĉeff +

∑
i

∂f∗

∂vi

Δt

1 + Δt
αi, (6)

where the symbol ∗ means that ∂f∗

∂vi
must be calculated

for vi = 0 and Ĉ0 = Ĉeff. Through the above procedure
we can identify the initial volume fractions vin

i = αit and
the actual final volume fractions

vfin
i =

Vi + ΔVi

V +
∑

k ΔVk
= αi

t + Δt

1 + Δt
. (7)

Therefore, the corresponding increments are given by

Δvi = vfin
i − vin

i = αiΔt
1 − t

1 + Δt
. (8)

We can recast equation (6) in the form

Ĉ′
eff

(
{vfin

i }
)
− Ĉeff

({vin
i }) =

∑
i

∂f∗

∂vi

Δt

1 + Δt
αi. (9)

The increment of the variable t, when we increase the
volume fractions vin

i up to the values vfin
i , is given by

Δvi

αi
= Δt 1−t

1+Δt . So, by dividing both sides of equation (9)
by the quantity Δvi

αi
= Δt 1−t

1+Δt , we obtain the differen-
tial quotient of the effective elastic tensor Ĉeff. Finally, in
the limit of Δt → 0, the iterative scheme converges to a
differential equation

dĈeff

dt
=

1
1 − t

∑
i

∂f∗

∂vi
αi (10)

with initial condition Ĉeff(t = 0) = Ĉ0. Once solved the
differential equation, we must restore t and αi through the
identities t =

∑
i vi and αi = vi/

∑
k vk.

3 Effective behavior of the multi-cracked
composite

We now address the above formal device to the paradig-
matic heterogeneous system we are going to investigate.
We consider an isotropic matrix with an elastic tensor
Ĉ0 embedding just two kinds of inclusions, namely: an as-
sembly of rigid parallel cylindrical fibers (stiffness Ĉ1 with
Young modulus E1 → ∞) and an assembly of slit cracks
(stiffness Ĉ2 with E2 → 0). The corresponding volume
fractions are v1 and v2, respectively. All the inclusions
are oriented along the same direction perpendicular to a
given plane, as shown in Figure 1. We impose the plane
strain condition, thus translating our problem into a two-
dimensional one. We remark that the slit cracks are ran-
domly oriented within the plane and, therefore, we will
observe an overall isotropic elastic behavior of the two-
dimensional system [10].

Provisionally, a slit crack is treated as a cylinder with a
strongly oblate elliptic base (corresponding to a vanishing
aspect ratio e, as defined in Fig. 1). This approach is very
convenient since we will develop our arguments by taking
profit from general results holding for ellipsoidal inclu-
sions [33,34]. Since the area of the elliptic base is given by
πab = πea2 (see Fig. 1), we can easily obtain the volume
fraction of the assembly of cracks as v2 = Nπea2/A = φe,
where N is the number of cracks dispersed over the area
A and φ = Nπa2/A is the crack density. From now on,
the two variables v1 = c (volume fraction of fibers) and φ
(crack density) will be used to describe the composition
of the system.

We can combine the general result given in equa-
tion (4) with the specific case of dilute populations of
fibers and cracks. In both cases, we benefit of the explicit
expressions for the Eshelby tensors, hereafter referred to
as Ŝ1 and Ŝ2, respectively [33]. In the present case equa-
tion (4), taking into account the population of random
oriented elliptic cylinders (void) and the population of re-
inforcing circular cylinders (rigid), assumes the form

Ĉeff = Ĉ0 + v1(Ĉ1 − Ĉ0)Â1 − v2Ĉ0Â2 (11)

where for the reinforcing fibres we have v1 = c and

Â1 =
[
Î − Ŝ1(Î − Ĉ−1

0 Ĉ1)
]−1

(12)

and for the random oriented cracks v2 = φe and

Â2 = 〈(Î − Ŝ2)−1〉. (13)

After some algebra concerning the limiting value of Ĉeff

for E1 → ∞, the homogenization procedure eventually
provides the effective Young modulus Eeff and the effective
Poisson ratio Eeff

Eeff = E0(1 + cGc + φeGφ)
Eeff = ν0 + cHc + φeHφ (14)
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where we have introduced the four quantities Gc, Gφ, Hc

and Hφ as follows

Gc =
(ν0 − 1)(8ν2

0 − 2ν0 + 5)
(4ν0 − 3)(ν0 + 1)

rGφ =
(ν0 − 1)(2ν0e

2 + 2ν0 + 4ν0e + e2 + e + 1)
e(ν0 + 1)

Hc =
(ν0 − 1)(2ν0 − 1)(4ν0 − 1)

4ν0 − 3

Hφ =
e − 3ν0e + 2ν2

0e − ν0 + ν2
0 − ν0e

2 + e2ν2
0

e
. (15)

The slit crack geometry is finally recovered through the
limit b → 0 or, equivalently, e → 0. We get

Eeff = E0 + cE0
(ν0 − 1)(8ν2

0 − 2ν0 + 5)
(4ν0 − 3)(ν0 + 1)

+ φE0
(ν0 − 1)(2ν0 + 1)

ν0 + 1

νeff = ν0 + c
(ν0 − 1)(2ν0 − 1)(4ν0 − 1)

4ν0 − 3
+ φν0(ν0 − 1). (16)

While equation (16) is valid in the dilute limit, we aim
at applying the above differential scheme in order to cope
with arbitrarily large volume fractions of fibers and cracks.
This can be done by using equation (10), where ∂f∗

∂vi
may

be easily obtained from equations (15) and (16). The re-
sulting system of differential equations for the effective
elastic moduli is

dEeff

dt
=

1
1 − t

(α1Gc + α2Gφ)Eeff

dνeff

dt
=

1
1 − t

(α1Hc + α2Hφ) , (17)

where the functions Gc,Gφ,Hc and Hφ must be evaluated
for ν0 = νeff. Of course, we consider the initial conditions
Eeff (t = 0) = E0 and νeff (t = 0) = ν0. The problem can
be solved through a couple of integrations as follows

∫ νeff

ν0

α1Gc (νeff) + α2Gφ (νeff)
α1Hc (νeff) + α2Hφ (νeff)

dνeff =
∫ Eeff

E0

dEeff

Eeff∫ νeff

ν0

dνeff

α1Hc (νeff) + α2Hφ (νeff)
=

∫ t

0

dt

1 − t
. (18)

Once performed the integrations, the relations t = c + φe,
α1 = c

c+φe and α2 = φe
c+φe are used in order to eliminate

the temporary parameters t, α1 and α2 and to introduce
the real quantities c and φ. Finally, by taking the limit
of e → 0, we obtain the key result of the present investi-
gation for a multi-cracked composite, namely an implicit
equation for the effective Poisson ratio

ln
1 − νeff

1 − ν0
+ ln

[
(1 − c)3+

φ
c

]
+

s

2
− 14c + 3φ

2c + φ

r

2q
= 0 (19)

and the explicit form of the effective Young modulus

ln
Eeff

E0
= − φ

2c + φ

s

2
− ln

1 + ν0

1 + νeff
− 8c− 3φ

2c + φ

r

2q
, (20)

where we have defined the parameters

q =

√
2c + 9φ

2c + φ

r = ln
[

q + 3 − 8ν0

q + 3 − 8νeff

q − 3 + 8νeff

q − 3 + 8ν0

]

s = ln
[

c + ν0 (4ν0 − 3) (2c + φ)
c + νeff (4νeff − 3) (2c + φ)

]
. (21)

We remark that the general result provided by equa-
tions (19) and (20) recovers the more specific case ob-
tained in reference [10] for a multi-cracked homogeneous
material (i.e., for c = 0). The same also holds for the par-
ticular case of a purely fibrous material (φ = 0): present
findings are consistent with previous literature [22]. More
specifically, if we consider c = 0 we obtain the explicit
expressions

νeff =
ν0

ν0 + (1 − ν0)eφ
(22)

Eeff = E0
2ν0 + (1 − ν0)eφ

[ν0 + (1 − ν0)eφ]2(1 + ν0)
. (23)

In this case the relation giving the effective Poisson ra-
tio has been explicitly solved as shown in equation (22).
Then, it is used in the relation for Eeff by obtaining equa-
tion (23). On the other hand, when φ = 0 (purely fibrous
material) we eventually obtain

(
1 − νeff

1 − ν0

)1/3 2νeff − 1
2ν0 − 1

(
1 − 4ν0

1 − 4νeff

)4/3

(1 − c) = 1 (24)

Eeff = E0
1 + νeff

1 + ν0

(
1 − 2νeff

1 − 2ν0

)2 (
1 − 4ν0

1 − 4νeff

)2

. (25)

In this case equation (24) giving the effective Poisson ratio
can not be solved explicitly and it remains in implicit form.

With the aim of analyzing the behavior of Eeff and
νeff described by equations (19) and (20) we show a series
of numerical results obtained for different values of the
matrix Poisson ratio. The results are organized as follows:
ν0 = −0.8 in Figure 2; ν0 = −0.5 in Figure 3; ν0 = 0.25
in Figure 4 and, finally, ν0 = 0.4 in Figure 5. The first
two cases concern a negative Poisson ratio of the matrix,
corresponding to the realistic cases reported for foams [39].
The other two cases show the results for positive values
of the matrix Poisson ratio, typical of brittle and ceramic
materials.

In Figure 2 (right) we note that when c → 0 and φ → 0
we obtain νeff → ν0, as expected for a matrix without any
inclusion (fiber or crack). Moreover, Figure 2 (right) shows
that, for φ = 0 and c → 1 (i.e. without cracks), we obtain
νeff → 1/4. This property can, in fact, be easily verified
by equation (24), and it is satisfied for any value of ν0.
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Fig. 2. (Color online) Effective Young modulus Eeff (left) and effective Poisson ratio νeff (right) in terms the crack density φ
calculated for a matrix with ν0 = −0.8. The arrow marked by c indicates an increasing volume fraction of fibers in the range
0 < c < 1. Eeff is normalized to the value E0 of the matrix Young modulus.
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Fig. 3. (Color online) Effective Young modulus Eeff (left) and effective Poisson ratio νeff (right) in terms the crack density φ
calculated for a matrix with ν0 = −0.5. The arrow marked by c indicates an increasing volume fraction of fibers in the range
0 < c < 1. Eeff is normalized to the value E0 of the matrix Young modulus.
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Fig. 4. (Color online) Effective Young modulus Eeff (left) and effective Poisson ratio νeff (right) in terms the crack density φ
calculated for a matrix with ν0 = 0.25. The arrow marked by c indicates an increasing volume fraction of fibers in the range
0 < c < 1. Eeff is normalized to the value E0 of the matrix Young modulus.
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Fig. 5. (Color online) Effective Young modulus Eeff (left) and effective Poisson ratio νeff (right) in terms the crack density φ
calculated for a matrix with ν0 = 0.4. The arrow marked by c indicates an increasing volume fraction of fibers in the range
0 < c < 1. Eeff is normalized to the value E0 of the matrix Young modulus.

We also observe that the value of the Poisson ratio tends
to become positive for both increasing values of c and φ.
This phenomenon can be explained by observing that the
extreme cases of void material and rigid material have an
elastic behavior which is in opposition to the elastic re-
sponse defined by a negative Poisson ratio (where a given
traction leads to a dilatation in the transverse directions).

As for the effective Young modulus shown in Figure 2
(left), we obtain, for low values of φ and c, a value greater
than the Young modulus of the original elastic matrix.
This is an interesting unconventional behavior of the effec-
tive Young modulus of the multicracked composite solid,
exhibited for negative Poisson ratio of the matrix. It can
be explained as follows: to begin, we consider the simpler
case with c = 0 (without fibres). The derivative of equa-
tion (23) with respect to φ (evaluated for φ = 0) can be
simply obtained as

dEeff

dφ
|φ=0 = E0

(ν0 − 1)(1 + 2ν0)
ν0 + 1

. (26)

Therefore, the curve Eeff/E0 versus φ shows a maximum
for −1 < ν0 < −1/2. Accordingly, equation (26) is positive
for −1 < ν0 < −1/2 proving that the effective Young mod-
ulus is an increasing function of φ around the point φ = 0.
This phenomenon remains observable for low values of the
fibre volume fraction c and disappears for higher values of
c. Evidently, for values of φ after the maximum, the effec-
tive Young modulus is definitively decreasing, describing
the progressive degradation of the multi-cracked material.
Moreover, the curves for Eeff/E0 in Figure 2 (left) show
the reinforcing effects of the fibres embedded in the com-
posite material: the exponential increase of Eeff/E0 with
c is in fact evident.

In the case with ν0 = −1/2, the curves of νeff shown in
Figure 3 (right) do not exhibit important variation with
respect to the previous case with ν0 = −0.8. On the con-
trary, as for the effective Young modulus, it is important
to note that the value ν0 = −1/2 represents a transition
in the elastic behavior. As a matter of fact, as shown in
equation (26), for ν0 = −1/2 we have dEeff

dφ |φ=0 = 0. It

means that, for φ → 0 and c = 0, the curve of Eeff/E0

approaches the value 1 with horizontal tangent line, as
clearly shown in Figure 3 (left).

We consider now the first case with a positive Poisson
ratio ν0 = 0.25. Figure 4 (right) shows that νeff = 1/4
for φ = 0 and for any value of the volume fraction c
of fibres. This behavior is in perfect agreement with the
above stated property: without cracks (φ = 0) and with an
high concentration of fibres (c → 1) we have νeff → 1/4.
In other words, we can say that the value ν0 = 1/4 as-
sumes the role of a fixed point for the Poisson ratio of the
fibrous material. As for the effective Young modulus, we
observe in Figure 4 (left) a qualitative behavior similar to
the previous results. Interestingly enough, we remark that
Eeff/E0 decreases with φ starting with an initial negative
slope (since ν0 > −1/2; see Eq. (26)).

Finally, we consider the case with ν0 = 0.4. We ob-
serve in Figure 5 (right) a decreasing trend of νeff (from
νeff = 0.4 to νeff = 0.25) for φ = 0 when c varies from
0 to 1. This behavior is again in perfect agreement with
the property above discussed. The behavior of the effec-
tive Young modulus shown in Figure 5 (left) confirms the
reinforcing effect of the distribution of cylindrical fibres in
the material.

4 Failure properties

The cornerstone of linear elastic fracture mechanics for
homogeneous materials is represented by the renowed
Griffith criterion for brittle failure, namely [40]: upon load-
ing, a single (isolated) slit crack propagates (i.e. the ma-
terial fails) provided that the tensile load is greater than
the Griffith failure stress σG

f . The same model provides
a simple and very useful relation between σG

f and the
Young modulus E0 and the Poisson ratio ν0 of the ma-
terial, namely

σG
f =

√
2γsE0

πa(1 − ν2
0)

, (27)
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Fig. 6. (Color online) Effective Young modulus Eeff and effective Poisson ratio νeff in terms of the volume fraction of fibers c
and the crack density φ calculated for a SiC matrix with ν0 = 0.18.

where we have imposed plane-strain conditions and we
have indicated by a and γs the crack half-length and
the material specific surface energy, respectively [41,42].
The Griffith criterion was originally stated in terms of an
energy balance: the growth of a crack within a material
under loading forces requires the creation of two new sur-
faces. Therefore, in order to make a material to fail (i.e.
in order to make the crack to increase its length), the me-
chanical work of the applied external forces must exceed
the work necessary to create new (internal) surface.

The Griffith criterion can be also stated in terms of the
Stress Intensity Factor (SIF) KG

I : a key quantity in linear
elastic fracture mechanics describing the concentration of
the stress near the crack tips, caused by a remote load.
For an isolated slit crack remotely loaded in mode I by a
stress σ, the asymptotic form of the tensile stress near the
crack tip is KG

I /
√

2πr (where r is the distance from the
crack tip measured on the crack plane). The linear elastic
theory predicts the value of KG

I in this case [41,42]

KG
I = σ

√
πa. (28)

The Griffith criterion can be also stated by affirming that
the crack propagates if KG

I ≥ KG
I,f where the quantity

KG
I,f =

√
2γsE0/(1 − ν2

0 ) is the so-called fracture tough-
ness, which a material constant.

From a conceptual point of view the energy balance
underlying the Griffith criterion can be also applied to a
population of cracks dispersed in a given body. Neverthe-
less, in such a case, the surface energy associated with the
population of cracks can be simply evaluated while the
elastic energy of the system under stress is not available
in closed form (since the elastic fields in this complex case
can not be evaluated analytically). Therefore, although
the energy balance still remains the key conceptual item,
it is very hard to exploit it in order to determine the failure
condition. So, the Griffith theory can be explicitly applied
only to an isolated crack, embedded in a homogeneous
material: a situation quite far off the common practice.
As a matter of fact, real materials (both manufactured
and natural) contain full populations of cracks (possibly
taking a large density) and display compositional fluctu-
ations (because of elastic inclusions, defects, precipitates
or fibers).

While the effective Youngs modulus and the effective
Poisson ratio are volume averaged quantities and they are
almost insensitive to clustering of the inhomogeneities or
specific spatial distributions of the inclusions, the failure
stress and the stress intensity factor are very sensitive to
the mutual positions of inhomogeneities. This is true since
their definitions depend on the worst case of spatial ar-
rangement of cracks and fibres. From this point of view,
these quantities can not be determined by an homogeniza-
tion technique, as the present one. Nevertheless, we can
obtain a rough estimate of the failure stress and the stress
intensity factor by supposing a uniform or regular distri-
bution of objects within the matrix. It means that we are
evaluating the average value of a random variable which
is, however, characterized by a large value of the standard
deviation.

We can use equations (19) and (20) for analyzing the
fracture mechanics of a multi-cracked and fibro-reinforced
material. An application of these results is given in
Figure 6 where Eeff and νeff are shown for a SiC ma-
trix (ν0 = 0.18). By considering a random distribution
of fibers and cracks as shown in Figure 1, the effective
average failure stress σeff

f in such a composite system can
be straightforwardly obtained from equation (27) by re-
placing ν0 and E0 with νeff and Eeff. It means that we
are calculating the average value of failure stress over all
the possible configurations with given volume fraction of
fibres and cracks. Therefore, σeff

f is simply provided by the
following relation

σeff
f = σG

f

√
Eeff

E0

1 − ν2
0

1 − ν2
eff

. (29)

The estimate in equation (29) reflects how failure prop-
erties are affected by the presence of heterogeneities.
Therefore, it can be used also as rough estimate of the
changes of the intrinsic toughness induced by the presence
of the heterogeneities. It is important to observe that there
are two specific cases where the estimate given in equa-
tion (29) should be assumed as a good approximation of
the real failure stress: (i) when the cracks and the rein-
forcing fibres are uniformly spaced (in average sense) in
the space (in this case all the effects induced by the prox-
imity of the heterogeneities are avoided); (ii) when we are
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dealing with cracks with the length much greater than the
radius of the fibres and small φ (in this case the population
of cracks can be considered quite exactly as embedded in
an effective homogeneous matrix).

In Figure 7 (left) we show the σeff
f /σG

f ratio versus the
fiber (c) and crack (φ) densities for the actual case of a
SiC matrix. If c = 0 we obtained the exact exponential law
σeff

f /σG
f = exp(−φ/2), which explains and quantifies the

degradation phenomenon with an increasing crack den-
sity. Moreover, the σeff

f /σG
f trend versus c quantitatively

predicts the reinforcing features due to the fibers.
In Figure 7 (right) we have also shown the ratio be-

tween the Stress Intensity Factor (SIF, in mode I) of a
crack in the composite material and an isolated crack of
the same size [41,42]. This plot has been obtained by ob-
serving that the following relation is verified

Keff
I

KG
I

=
σG

f

σeff
f

(30)

with the same degree of approximation of equation (29). It
means that the SIF ratio shows a behavior which is simply
the reverse of that of the failure stress.

Finally, in Figure 8 we consider the contour plot of the
ratio σeff

f /σG
f : by selecting a given crack density φ∗ admit-

ted in a sample, it is indeed possible to directly predict the

value of the suitable volume fraction c∗ of fibers that must
be embedded in order to get the desired value of failure
stress ratio x∗. This is shown in Figure 8 where a com-
posite SiC system containing a φ∗ concentration of rigid
carbon fibers is considered. If we need that such a compos-
ite resists up to a maximum applied stress ratio as large
as x∗, we should embed as many fibers as corresponding
to a volume fraction c∗.

5 Conclusions

In conclusion, a refined iterative/differential scheme has
been introduced in order to evaluate the effective elastic
properties of a multi-cracked and fibrous material. The
interactions among reinforcing inclusions and cracks have
been taken into account in order to obtain a homogeniza-
tion scheme which is valid for arbitrary values of volume
fraction of fibres and crack density. The results have been
shown for both negative and positive values of the matrix
Poisson ratio. The case of the C/SiC composite structure
has been considered from the point of view of the failure
stability. We have shown that this approach allows for an
approximate prediction and design of the fibro-reinforcing
system, as for its failure condition.
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